Using Langflow APIs
- Login to Langflow service
- Create a flow
- Create an API endpoint name. e.g. my-api-endpoint
- Click on flow name > Edit Details > Endpoint Name
- Get an access token using Practicus AI SDK
- Note the LLM model token as well, API calls do not use tokens you saved in the UI
- Make API calls
service_url = "https://langflow.dev.practicus.io"
# The below is defined in Langflow UI.
# Open a flow, click on flow name > Edit Details > Endpoint Name
endpoint_name = "my-api-endpoint"
assert service_url, "Please define service_url"
assert endpoint_name, "Please define endpoint_name"
api_url = f"{service_url}/api/v1/run/{endpoint_name}?stream=false"
print("API url:", api_url)
# e.g. https://langflow.dev.practicus.io/api/v1/run/api-test1?stream=false
import practicuscore as prt
region = prt.current_region()
token = None # Get a new token, or reuse existing if not expired.
access_token = region.get_addon_session_token(key="langflow", token=token)
import requests
headers = {"Content-Type": "application/json", f"Authorization": f"Bearer {access_token}"}
payload = {
"input_value": "message",
"output_type": "chat",
"input_type": "chat",
"tweaks": {
"ChatInput-MRIWj": {},
"Prompt-KvhR7": {},
"ChatOutput-CuWil": {},
"OpenAIModel-dmT1W": {"api_key": open_ai_token},
},
}
response = requests.post(api_url, headers=headers, json=payload)
print(response.status_code)
result = response.json()
print(result)
Previous: Milvus Chain | Next: Ecomm Sdk > Memory Chabot